Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Microbiol Spectr ; 10(2): e0250721, 2022 04 27.
Article in English | MEDLINE | ID: covidwho-1779319

ABSTRACT

The multiplex capabilities of the new xMAP INTELLIFLEX DR-SE flow analyzer were explored by modifying a serological assay previously used to characterize the IgG antibody to infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The goal was to examine the instrument's performance and to simultaneously measure IgM and IgG antibody responses against multiple SARS-CoV-2 antigens in a single assay. Specific antibodies against the SARS-CoV-2 spike (S), receptor binding domain (RBD), and nucleocapsid (N) proteins were investigated in 310 symptomatic case patients using a fluorescent microsphere immunoassay and simultaneous detection of IgM and IgG. Neutralization potential was studied using the addition of soluble angiotensin-converting enzyme 2 (ACE2) to block antibody binding. A profile extending to 180 days from symptom onset (DFSO) was described for antibodies specific to each viral antigen. Generally, IgM levels peaked and declined rapidly ∼3-4 weeks following infection, whereas S- and RBD-specific IgG plateaued at 80 DFSO. ACE2 more effectively prevented IgM and IgG binding in convalescent cases > 30 DFSO, suggesting those antibodies had greater neutralization potential. This work highlighted the multiplex and multi-analyte potential of the xMAP INTELLIFLEX DR-SE, and provided further evidence for antigen-specific IgM and IgG trajectories in acute and convalescent cases. IMPORTANCE The xMAP INTELLIFLEX DR-SE enabled simultaneous and semi-quantitative detection of both IgM and IgG to three different SARS-CoV-2 antigens in a single assay. The assay format is advantageous for rapid and medium-throughput profiling using a small volume of specimen. The xMAP INTELLIFLEX DR-SE technology demonstrated the potential to include numerous SARS-CoV-2 antigens; future work could incorporate multiple spike protein variants in a single assay. This could be an important feature for assessing the serological response to emerging variants of SARS-CoV-2.


Subject(s)
COVID-19 , SARS-CoV-2 , Angiotensin-Converting Enzyme 2 , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/diagnosis , Humans , Immunoglobulin G , Immunoglobulin M , Nucleocapsid , Spike Glycoprotein, Coronavirus
2.
J Clin Microbiol ; 59(2)2021 01 21.
Article in English | MEDLINE | ID: covidwho-1041375

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic has highlighted the challenges inherent to the serological detection of a novel pathogen such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Serological tests can be used diagnostically and for surveillance, but their usefulness depends on their throughput, sensitivity, and specificity. Here, we describe a multiplex fluorescent microsphere-based assay, 3Flex, that can detect antibodies to three major SARS-CoV-2 antigens-spike (S) protein, the spike ACE2 receptor-binding domain (RBD), and nucleocapsid (NP). Specificity was assessed using 213 prepandemic samples. Sensitivity was measured and compared to that of the Abbott Architect SARS-CoV-2 IgG assay using serum samples from 125 unique patients equally binned (n = 25) into 5 time intervals (≤5, 6 to 10, 11 to 15, 16 to 20, and ≥21 days from symptom onset). With samples obtained at ≤5 days from symptom onset, the 3Flex assay was more sensitive (48.0% versus 32.0%), but the two assays performed comparably using serum obtained ≥21 days from symptom onset. A larger collection (n = 534) of discarded sera was profiled from patients (n = 140) whose COVID-19 course was characterized through chart review. This revealed the relative rise, peak (S, 23.8; RBD, 23.6; NP, 16.7 [in days from symptom onset]), and decline of the antibody response. Considerable interperson variation was observed with a subset of extensively sampled intensive care unit (ICU) patients. Using soluble ACE2, inhibition of antibody binding was demonstrated for S and RBD, and not for NP. Taking the data together, this study described the performance of an assay built on a flexible and high-throughput serological platform that proved adaptable to the emergence of a novel infectious agent.


Subject(s)
COVID-19 Serological Testing/methods , COVID-19/diagnosis , Microspheres , SARS-CoV-2/isolation & purification , Aged , Aged, 80 and over , Angiotensin-Converting Enzyme 2 , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19/blood , COVID-19/pathology , Coronavirus Nucleocapsid Proteins/immunology , Female , Fluoroimmunoassay , Humans , Immunoglobulin G/blood , Kinetics , Male , Middle Aged , Phosphoproteins/immunology , SARS-CoV-2/immunology , Sensitivity and Specificity , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL